# Why worry about mutualisms and climate change?

- Ecologically and economically important
  - Mutualisms = interactions benefit both participants (+, +)
  - Pollination, seed dispersal, plant protection, etc.
- Climate change affecting many species
  - Many are mutualists
- Mutualistic interactions often tightly linked
  - Specter of co-extinctions
    - Loss of one species result in loss of many others that depend it
  - "4<sup>th</sup> horseman" of main drivers of extinction - *Diamond 1989*



## Pollination and seed dispersal are best studied mutualistic interactions



From Bronstein et al. 1998

# Why pollination and dispersal mutualisms are important

- Some plants need animals to reproduce
  - Movement of pollen (gene flow)
  - Dispersal of seeds to 'safe sites'
- Some animals need plants to survive and reproduce
  - Provision of food: pollen, nectar and 'fruits'
  - Diversity of animal taxa involved in plant mutualisms
    - Invertebrates: butterflies, moths, bees, beetles, ants, etc.









### Overview

- Evidence for climate change impacts on species
- Possible effects of climate change on mutualisms
- Conservation of mutualisms in the Laguna in the face of climate change



### Overview

- Evidence for climate change impacts on species
- Possible effects of climate change on mutualisms
- Conservation of mutualisms in the Laguna in the face of climate change



## Many species being affected by climate change (Parmesan and Yohe 2003)

| Type of change           | Climate change<br>prediction                                                | Change as predicted |
|--------------------------|-----------------------------------------------------------------------------|---------------------|
| Phenology                | Earlier timing of<br>spring events                                          | 87%                 |
| Distribution             | Poleward or upward<br>range shifts                                          | 81%                 |
| Community<br>composition | Increase in warm-adapted<br>species and decrease in<br>cold-adapted species | 85%                 |

Based on meta-analysis involving 944 species representing multiple taxa – plants and animals

### Overview

- Evidence for climate change impacts on species
- Possible effects of climate change on mutualisms
- Conservation of mutualisms in the Laguna in the face of climate change



## The problem of altered synchrony: mismatches between mutualists

### <u>Scenarios</u>: Temporal mismatches (phenology)

- Animal mutualists emerge earlier (or later) than plant partners
- Plant mutualists emerge earlie (or later) than animal partners
- Plants respond to warming, but mutualists respond to other cues (and visa versa)
  - *i.e.* photoperiod



Central Valley butterflies emerging earlier (average 21 days Foristee and appiro 2003

## Mismatches between mutualists, cont.

## <u>Scenarios</u>: Spatial mismatch (distribution)

- When range shifts out of synch
  - Plant mutualists shift/contract range, mutualist partners do not
  - Animals mutualists shift/contract range, plant partners do not
- Plants and animal mutualists shift ranges together in lock step



~ 1/3<sup>rd</sup> of CA flora predicted to experience dramatic range reductions within next century (*Loarie et al. 2008*) – what will happen to mutualist partners?

### **Consequences of mismatches**



## Mismatched mutualisms – the evidence (or lack

- \_thereof)
- Empirical data:
  - Data are slim, speculation is ample (e.g. Visser and Both 2005)
  - Mutualistic interactions weakened by climate change
    - Based on recent synthesis of 688 studies (Tylianakis et al. 2008)
  - Fossil/pollen record shows community disassembly during periods of climate change (Davis and Shaw 2001)

### Simulation data:

- Co-extinctions of mutualists should be common (Memmett et al. 2007, Dunn et al. 2009)
  - Not well-supported by empirical data

# The evidence paradox: why don't model predictions match the empirical data?

- Insufficient research?
- Other drivers of global environmental change (GEC) may mask effects of climate change
  - N deposition, habitat loss and fragmentation, biological invasions, etc.
  - Higher order effects of GEC drivers rarely studied
- Plant-animal mutualistic networks may buffer effects of GEC (Memmet et al. 2004 and Bascompte et al. 2006)
  - Whole interaction networks rarely studied (empirically)
    - Problem of looking only at pair-wise interactions
  - Mutualist networks heterogenous, asymetrical, with weak linkages

## Example of plant-pollinator network

• From Zackenberg Arctic Tundra,



From Bascompte and Jordano 2007

### **Do mutualisms matter?**

- Which mutualist species are threatened by climate change impacts and in what systems?
- Which traits predict vulnerability?







## Predicting which plants are vulnerable

- Probability of mutualism failing
  - Generalist vs. specialist
  - Degree of redundancy



- Few partners vs. network of mutualist partners
- Degree of reproductive dependence
  Obligate vs. facultative
- Degree of demographic importance of seeds

- Importance of seeds to population dynamics

### Overview

- Evidence for impacts of climate change on species interactions
- Possible effects of climate change on mutualisms
- Conservation of mutualisms in the Laguna in the face of climate change



## Which special-status plants are at greatest risk in the Laguna watershed?

|                                       |                                               | Feder |       |      |     |
|---------------------------------------|-----------------------------------------------|-------|-------|------|-----|
| Common Name                           | Scientific Name                               | al    | State | CNPS | RMP |
| Burke's goldfields                    | Lasthenia burkei                              | FE    | SE    | 1B.1 | YES |
| Calistoga popcorn-flower              | Plagiobothrys strictus                        | FE    | ST    | 1B.1 | NO  |
| Clara Hunt's milk-vetch               | Astragalus claranus                           | FE    | ST    | 1B.1 | NO  |
| Hickman's cinquefoil<br>Kenwood Marsh | Potentilla hickmanii                          | FE    | SE    | 1B.1 | YES |
| checkerbloom                          | Sidalcea oregana ssp. valida                  | FE    | SE    | 1B.1 | NO  |
| Loch Lomond button-celery             | Eryngium constancei                           | FE    | SE    | 1B.1 | NO  |
| Napa blue grass                       | Poa napensis                                  | FE    | SE    | 1B.1 | NO  |
| Pitkin Marsh lily                     | Lilium pardalinum ssp. pitkinense             | FE    | SE    | 1B.1 | YES |
| Sebastopol meadowfoam                 | Limnanthes vinculans                          | FE    | SE    | 1B.1 | YES |
| Showy indian clover                   | Trifolium amoenum<br>Alopecurus aegualis var. | FE    |       | 1B.1 | YES |
| Sonoma alopecurus                     | sonomensis                                    | FE    |       | 1B.1 | YES |
| Sonoma spineflower                    | Chorizanthe valida                            | FE    | SE    | 1B.1 | YES |
| Sonoma sunshine                       | Blennosperma bakeri                           | FE    | SE    | 1B.1 | YES |
| Vine Hill clarkia                     | Clarkia imbricata                             | FE    | SE    | 1B.1 | YES |
| White sedge                           | Carex albida                                  | FE    | SE    | 1B.1 | YES |
| Yellow larkspur                       | Delphinium luteum                             | FE    |       | 1B.1 | NO  |
|                                       |                                               |       |       |      |     |

# What about the animal pollinators?

- How will changes in plant phenology and and distributions influence animal mutualists?
  - Many vernal pool bees specialize on collecting pollen from one or few plant species
    - i.e. Andrenid bees



Andrena limnanthus on Limnanthes douglasi ssp. rosea



Nests of vernal pool solitary bees



Andrena blennospermatis on Blennosperma nanum

### **Preserving mutualisms in Laguna Watershed**

#### Recommendations:

- Protect more land (i.e. habitat).
  - Last of the least, best of the rest
  - Assume range contractions norm for most species of concern
- Maintain habitat connectivity at different scales
- Manage other drivers of GEC
  - Especially invasives





## Preserving mutualisms in the watershed, <u>cont.</u>

- Prioritize species at greatest risk to coextinction/ extirpation
  - i.e. traits analysis
- Provide surrogate mutualist services
  - Hand-pollination, seed dispersal for species threatened by loss or decline of mutualist partners
- Develop systematic conservation plan for County
  - i.e. Upland Goals Project approach

### Conclusions

- Climate change affecting many mutualists
- Little data on how these changes affect mutualistic interactions
- Mutualistic interaction networks likely to buffer impacts of climate change to a point
- Need to understand which mutualist species most vulnerable to disruption



# Future responses to mismatches?





Mismatch dampened by adaptation

> Current 'trend' continues

From *Hegland et al.* 2009